Index to mark schemes

Tier				Question	Page
3-5	4-6	$5-7$	$\mathbf{6 - 8}$		
		21	14	Percentage change	38
			15	Star	39
			16	Trigonometry	40
			17	Satellite	41
			18	Simplify	42

First published in 2002
© Qualifications and Curriculum Authority 2002

Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, provided full acknowledgement is given.

Produced in Great Britain by the Qualifications and Curriculum Authority under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

The Qualifications and Curriculum Authority is an exempt charity under Schedule 2 of the Charities Act 1993.

Qualifications and Curriculum Authority
83 Piccadilly
London
W1J 8QA
www.qca.org.uk/

Further teacher packs may be purchased (for any purpose other than statutory assessment) by contacting:

QCA Publications, PO Box 99, Sudbury, Suffolk CO10 2SN
(tel: 01787 884444; fax: 01787 312950)

Order ref: QCA/02/831

Ma

KEY STAGE 3

ALL TIERS

2002

Mathematics tests

Mark scheme for Paper 2

Tiers 3-5, 4-6, 5-7 and 6-8

Introduction

The test papers will be marked by external markers. The markers will follow the mark scheme in this booklet, which is provided here to inform teachers.

This booklet contains the mark scheme for paper 2 at all tiers. The paper 1 and the extension paper mark schemes are printed in separate booklets. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for questions is set out in the form of tables, which start on page 10 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part, and the total number of marks available for that question part.

The 'Correct response' column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative;
- examples of some different types of correct response, including the most common and the minimum acceptable.

The 'Additional guidance' column indicates alternative acceptable responses, and provides details of specific types of response that are unacceptable. Other guidance, such as when 'follow through' is allowed, is provided as necessary.

For graphical and diagrammatic responses, including those in which judgements on accuracy are required, marking overlays have been provided as the centre pages of this booklet.

General guidance

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance, relating to marking of questions that involve money, time, coordinates, algebra or probability. Unless otherwise specified in the mark scheme, markers should apply the following guidelines in all cases.

What if ...
$\left.\begin{array}{|r|l|}\hline \begin{array}{r}\text { The pupil's response } \\ \text { does not match } \\ \text { closely any of the } \\ \text { examples given. }\end{array} & \begin{array}{l}\text { Markers should use their judgement in deciding whether the response } \\ \text { corresponds with the statement of requirements given in the 'Correct response' } \\ \text { column. Refer also to the additional guidance. }\end{array} \\ \hline \begin{array}{r}\text { The pupil has } \\ \text { responded in a } \\ \text { non-standard way. }\end{array} & \begin{array}{l}\text { Calculations, formulae and written responses do not have to be set out in any } \\ \text { particular format. Pupils may provide evidence in any form as long as its } \\ \text { meaning can be understood. Diagrams, symbols or words are acceptable for } \\ \text { explanations or for indicating a response. Any correct method of setting out } \\ \text { working, however idiosyncratic, is acceptable. Provided there is no ambiguity, } \\ \text { condone the continental practice of using a comma for a decimal point. }\end{array} \\ \hline \text { The pupil has made a } \\ \text { conceptual error. }\end{array} \quad \begin{array}{l}\text { In some questions, a method mark is available provided the pupil has made } \\ \text { a computational, rather than conceptual, error. A computational error is } \\ \text { a 'slip' such as writing 4 } \times 6=18 \text { in an otherwise correct long multiplication. } \\ \text { A conceptual error is a more serious misunderstanding of the relevant } \\ \text { mathematics; when such an error is seen no method marks may be awarded. } \\ \text { Examples of conceptual errors are: misunderstanding of place value, such as } \\ \text { multiplying by } 2 \text { rather than 20 when calculating 35 } \times 27 \text {; subtracting the } \\ \text { smaller value from the larger in calculations such as 45 - 26 to give the } \\ \text { answer 21; incorrect signs when working with negative numbers. }\end{array}\right]$

What if ...

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark scheme, and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether: the incorrect answer is due to a transcription error;	If so, award the mark.
	in questions not testing accuracy, the correct answer has been given but then rounded or truncated;	If so, award the mark.
	the pupil has continued to give redundant extra working which does not contradict work already done;	If so, award the mark.
	the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.	If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.
The pupil's answer is correct but the wrong working is seen.	A correct response should always be marked as correct unless the mark scheme states otherwise.	
The correct response has been crossed (or rubbed) out and not replaced.	Mark, according to the mark scheme, any legible crossed (or rubbed) out work that has not been replaced.	
More than one answer is given.	If all answers given are correct (or a range of answers is given, all of which are correct), the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.	
The answer is correct but, in a later part of the question, the pupil has contradicted this response.	A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.	

Marking specific types of question

Responses involving money
For example: $£ 3.20$ £7

Accept \checkmark	Do not accept x
\checkmark Any unambiguous indication of the	\timesIncorrect or ambiguous use of pounds or pence

eg $£ 3.20(p), £ 320, £ 3,20$, 3 pounds 20, £3-20, £3 20 pence, $£ 3: 20$, £7.00
\checkmark The $£$ sign is usually already printed
x Incorrect placement of decimal in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the $£$ sign, accept an answer with correct units in pounds and/or pence
eg 320 p , 700p
eg $£ 320, £ 320$ p or $£ 700$ p, or 3.20 or 3.20 p not in the answer space. points, spaces, etc or incorrect use or omission of 0
eg £3.2, £3 200, £32 0, £3-2-0, £7.0

Responses involving time

A time interval For example: 2 hours 30 mins

Accept $\sqrt{ }$	Take care ! Do not accept \times
\checkmark Any unambiguous indication eg 2.5 (hours), 2h 30 \checkmark Digital electronic time ie 2:30	x Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, 2.30 min ! The time unit, hours or minutes, is usually printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the given unit, accept an answer with correct units in hours or minutes, unless the question has asked for a specific unit to be used.
A specific time For example: 8.40am, 17:20	
Accept $\sqrt{ }$	Do not accept \times
\checkmark Any unambiguous, correct indication eg $08.40,8.40,8: 40,0840,840$, $8-40$, twenty to nine, 8,40 \checkmark Unambiguous change to 12 or 24 hour clock eg 17:20 as 5:20pm, 17:20pm	x Incorrect time eg 8.4am, 8.40pm x Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

Responses involving coordinates

For example: $(5,7)$

Accept \checkmark	Do not accept \times
```\checkmark ~ U n a m b i g u o u s ~ b u t ~ u n c o n v e n t i o n a l ~ notation eg (05,07) ( five, seven ) (\begin{array}{l}{x}\\{5}\end{array},7) (x=5, y=7)```	```x Incorrect or ambiguous notation eg (7,5) (5x,7y) (x5, y7) (5```

## Responses involving the use of algebra

For example: $2+n \quad n+2 \quad 2 n$

Accept $\checkmark$	Take care ! Do not accept $\times$
$\checkmark$The unambiguous use of a different   case   eg $N$ used for $n$	! Words or units used within equations   or expressions should be ignored if   accompanied by an acceptable   response, but should not be accepted   on their own
$\checkmark$ Unconventional notation for	(

multiplication
eg $n \times 2$ or $2 \times n$ or $n 2$
or $n+n$ for $2 n$
$n \times n$ for $n^{2}$
$\checkmark$ Multiplication by 1 or 0

$$
\text { eg } \quad 2+1 n \text { for } 2+n
$$

$$
2+0 n \text { for } 2
$$

Words used to precede or follow equations or expressions

$$
\begin{array}{ll}
\text { eg } & t=n+2 \text { tiles or } \\
& \text { tiles }=t=n+2 \\
& \text { for } t=n+2
\end{array}
$$

$\checkmark$ Unambiguous letters used to indicate expressions

$$
\text { eg } \quad t=n+2 \text { for } n+2
$$

$\checkmark$ Embedded values given when solving equations

$$
\text { eg } \begin{aligned}
& 3 \times 10+2=32 \\
& \\
& \text { for } 3 x+2=32
\end{aligned}
$$

! Words or units used within equations or expressions should be ignored if accompanied by an acceptable on their own

> eg do not accept

$$
\begin{aligned}
& n \text { tiles }+2 \\
& n \mathrm{~cm}+2
\end{aligned}
$$

$\times$ Change of variable

$$
\text { eg } x \text { used for } n
$$

x Ambiguous letters used to indicate expressions

$$
\text { eg } n=n+2
$$

However, to avoid penalising any of the three types of error above more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld.
x Embedded values that are then contradicted
eg for $3 x+2=32$,

$$
3 \times 10+2=32, x=5
$$

## Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only.

For example: 0.7

Accept $\checkmark$	Take care ! Do not accept $\times$
$\checkmark$ A correct probability that is correctly expressed as a decimal, fraction or percentage.   / Equivalent decimals, fractions or percentages   eg $0.700, \frac{70}{100}, \frac{35}{50}, 70.0 \%$   $\checkmark$ A probability correctly expressed in one acceptable form which is then incorrectly converted, but is still less than 1 and greater than 0   eg $\frac{70}{100}=\frac{18}{25}$	The following four categories of error should be ignored if accompanied by an acceptable response, but should not be accepted on their own.   ! A probability that is incorrectly expressed   eg 7 in 10 ,   7 out of 10 ,   7 from 10   ! A probability expressed as a percentage without a percentage sign.   ! A fraction with other than integers in the numerator and/or denominator.   However, each of the three types of error above should not be penalised more than once within each question. Do not award the mark for the first occurrence of each type of error unaccompanied by an acceptable response. Where a question part carries more than one mark, only the final mark should be withheld.   ! A probability expressed as a ratio   eg 7:10, 7:3, 7 to 10   $\times$ A probability greater than 1 or less than 0

## Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 120 marks is available in each of tiers 3-5, 4-6, 5-7 and 6-8. The extension paper carries 42 marks.

## Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental arithmetic paper determines the level awarded. Level threshold tables, which show the mark ranges for the award of different levels, will be available on the QCA website (www.qca.org.uk) from Wednesday 26 June 2002. QCA will also send a copy to each school in July.

Schools will be notified of pupils' results by means of a marksheet, which will be returned to schools by the External Marking Agency with the pupils' marked scripts. The marksheet will include pupils' scores on the test papers and the levels awarded.

The 2002 key stage 3 mathematics tests and mark schemes were developed by the Mathematics Test Development Team at QCA.

Tier \& Question					Game
3-5	4-6 5-7	6-8			
1				Correct response	Additional guidance
a			1 m	430	
b			1 m	609	
c			1m	391	! Follow through as 1000 - their (b) Accept, provided their (b) < 1000


Tier \& Question				Marking overlay available		Travelling to school
3-5	4-6	5-7 6	6-8			
2					Correct response	Additional guidance
a				1 m	5	
b				1 m	6	
c				1m	4	
d				1 m	Indicates the triangle west of the school	! More than one symbol ringed Do not accept if more than one triangle is ringed. Accept if the only triangle ringed is the correct one, as some pupils may mark the diagram to help with other parts of the question
e				$2 \mathrm{~m}$   or $1 \mathrm{~m}$	Draws a square, within the angle tolerance as shown on the overlay, touching the 3 km line   Fulfils any two of the three conditions below. The symbol drawn is a square; has direction within the angle tolerance as shown on the overlay; touches the 3 km line	! Square not accurate Accept, including in any orientation, provided there is no ambiguity within the context of the question   ! Square touches the lines indicating the angle tolerance   Accept, provided the square does not extend beyond the dashed lines shown on the overlay   ! Rings round existing symbols Ignore in part (e)


Tier \& Question					Holiday
3-5	4-6 5-7	6-8			
3				Correct response	Additional guidance
a			1m	£ 10	$\times$ Incorrect response eg $\cdot-10$
b			3 m   or 2 m   or   1 m	$£ 22$   Shows the digits 22   eg   - 220   - 2.20   or   Shows the values 586 and 608   or   Shows one of the values 586 and 608 and correctly subtracts using their incorrect total eg   - Woman 586, man 648 (error), $648-586=62$   - $194+196+196=486$ (error)   $289+319=608$   so it's 122 more   or   Shows a complete correct method with the only error in the final answer   eg   - $289+319-(194+196+196)=32$ (error)   Shows one of the values 586 or 608	



Tier \& Question						School trip
3-5	4-6 5	5-7 6	6-8			
5					Correct response	Additional guidance
a				1m	60	
b				2 m   or   1 m	All three correct, ie 5   6   10   Any two correct	



\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& Q \& stion \& \& \& Dinner time <br>
\hline 7 \& 2 \& \& \& Correct response \& Additional guidance <br>
\hline a \& a \& \& \[
$$
\begin{gathered}
2 \mathrm{~m} \\
\\
\\
\text { or } \\
1 \mathrm{~m}
\end{gathered}
$$

\] \& \begin{tabular}{l}
All three rows correct, ie

<br>
Any two rows correct

 \& 

! Frequencies shown <br>
For 2 m or 1 m , if the correct box for a row has been identified ignore any frequencies shown, even if incorrect. If the correct box for a row has not been identified, and all 9 frequencies are correct, mark as 1,0 eg <br>

36
26


36	28
30	

\end{tabular} <br>

\hline b \& b \& \& \[
$$
\begin{gathered}
2 \mathrm{~m} \\
\\
o r \\
1 \mathrm{~m}
\end{gathered}
$$

\] \& | 12 |
| :--- |
| Shows at least one of the following totals: $\begin{aligned} & 106 \text { (or } 70 \text { ), } \\ & 94 \text { (or } 58 \text { ) } \end{aligned}$ |
| or |
| Shows both of the differences 2 and 14 , with no evidence of an incorrect method | \& ! Signs incorrect Ignore <br>

\hline
\end{tabular}

Tier \& Question		stion		Which calculation?
3-5	4-6 5-7	6-8		
8	3		Correct response	Additional guidance
a	a	$\begin{aligned} & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \end{aligned}$	Joins the first to $4-3$   Joins the second to $(3 \times 27)+(4 \times 25)$   Joins the third to $(4 \times 25)-(3 \times 27)$	The following shows the correct responses:
b	b	1 m	The question refers to the total number of pupils in year 9   eg   - Altogether, how many people are in year 9?   - How many pupils are there in year 9?   or   The question refers to both 4 and 25 , and interprets the significance of the multiplication sign   eg   - How many pupils are there altogether in 4 classes of 25?   or   Interprets the calculation in a valid way whilst still referring to year 9   eg   - If there were always 4 classes in year 9, how many classes would there have been in 25 years?	$\checkmark$ Response is a statement rather than a question   eg, for the first category   - It's the total number of people in year 9   - All the pupils in all the classes in the oldest year   $\times$ Incomplete response   eg   - How many pupils altogether?   $\checkmark$ Response processes the $4 \times 25$ correctly eg   - Altogether there are 100 pupils in year 9   - 100 pupils are in year 9   $\times$ Incomplete response   eg   - How many pupils altogether in 4 classes?   - It's the number of classes in year 9 with the number of students   - Four classes with 25 pupils in year 9   $\times$ Response does not refer to the given context eg   - 25 pupils each have 4 rulers. How many rulers do they have altogether?   $\times$ Response matches a different calculation eg   - If there are 100 students in year 9 and only 4 teachers, how many pupils are in each class?


Tier \& Question			Throwing coins		
3-5		5-7\|6-8			
9	4			Correct response	Additional guidance
a	a		1m	Indicates 'True' and gives a correct explanation that implies there are two outcomes, both of which are equally likely eg   - There are two equally likely possibilities, heads or tails   - A head is just as likely as a tail   - Both sides are equally likely	$\checkmark$ Minimally acceptable explanation   eg, implicit reference to equally likely   - There are 2 sides   - It can land on H or T   eg, implicit reference to two outcomes   - It's $50-50$   - It's an even chance   - As it's a fair coin   $\times$ Incomplete explanation   eg   - You don't know what will come up next   - Coins sometimes land on heads   - It is equal   - It's a fair chance
b	b		1 m	Indicates 'False' and gives a correct explanation   The most common correct explanations:   State the outcome cannot be predicted with certainty eg   - Each throw is random   - You don't know what you will get. It's just chance   - You don't know until you've thrown   - You never know which side the coin will land on   Show there are alternative outcomes eg   - You might get 4 heads   - There are more possibilities like HHHH, HННТ, HHTH and so on   - You could get just one tail	$\checkmark$ Minimally acceptable explanation   eg, for the first category   - It's random   - It's chance   eg, for the second category   - You might get something different   - You don't know that's what you'll get   - Each one could land on any side   ! Explanation refers to one throw of one coin Condone provided reference is made to both uncertainty and two outcomes   eg   - It can land on either side   - It could land on H or T   $\mathbf{x}$ Incomplete explanation   eg   - It could be anything   - You don't know   - It's not certain   $\times$ Incorrect or ambiguous explanation eg   - There are five different outcomes   - You are as likely to get 3 heads and 1 tail   - It's 50 - 50


Tier \& Question						Folding	
3-5	4-6	5-7	6-8				
10	5				Correct response	Additional guidance	
a	a			$2 \mathrm{~m}$   or $1 \mathrm{~m}$	Both correct, ie 12 by 4 (either order) and 6 by 8 (either order)   One correct, the other incorrect or omitted		
b	b			1m	3		


Tier \& Question						Yards
3-5	4-6	5-7	6-8			
11	6	1			Correct response	Additional guidance
a	a	a		1 m	91.44	$\checkmark 91$ or 91.4
b	b	b		$2 \mathrm{~m}$   or   1m	109 or 109.(...) with no evidence of an incorrect method   Shows the digits $109(\ldots)$ but the decimal point is positioned incorrectly or omitted   or   Shows the correct inverse operations, in any order   eg $\times 100, \div 2.54, \div 36$   or   Shows $\div 91.44$	! Answer of 110   Accept provided a more accurate value or a correct method is seen   $\times$ Correct answer from an incorrect method eg   - $100-91.44=8.56,100+8.56$ is about 109   ! Answers to parts (a) and (b) reversed Treat as a misread and deduct the first mark only


Tier \& Question				Scales		
3-5 4	4-6	5-7	6-8			
12	7	2			Correct response	Additional guidance
a	a			1 m	14 to 14.2 inclusive	
b	b			1m	220 to 230 inclusive	$\checkmark$ Fractional value
c	c			$2 \mathrm{~m}$   or   1m	35 to 36 inclusive   Shows how to use the scale to find 1000 g , even if the scale is read incorrectly eg   - Work out what it is for 100 g , then $\times 10$   - $400 \mathrm{~g}+400 \mathrm{~g}+200 \mathrm{~g}$   - 200 g is $7,5 \times 7$   - 100 g is 4 (error) ounces, $4 \times 10$   - 500 g is 17 (error), then double 17   - 250 is $9,9 \times 4=32$ (error)   or   Shows a correct multiplication, or a correct addition, that would give an answer within the correct range, even if this is followed by incorrect processing eg   - $3.6 \times 10$   - $5 \times 7$   - $14+14+7$	! Follow through from part (a) Accept provided it is explicit in the working that the method incorporates this incorrect value   $\times$ Poor mathematical communication   Do not infer incorrect reading of the scale eg   - $3 \times 10$ (No indication of method through written working or through markings on the scale, and answer to the calculation is outside the acceptable range)


Tier \& Question						Security lock
3-5	4-6	5-7	6-8			
13	8	3			Correct response	Additional guidance
a	a	a		$\begin{gathered} 2 \mathrm{~m} \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	24 , with no incorrect working   Shows a correct method eg   - $4 \times 6$   - There are 6 ways for the letter A and it is the same for each of the other letters   or   Lists in a systematic way for any one of the letters or any one of the numbers eg   - C1, C2, C3, C4, C5, C6   - A / 6, 5, 4, 3, 2, 1   - A1, B1, C1, D1	$\times 24$ obtained from listing that includes duplication
b	b	b		1 m	$\frac{1}{6}$ or equivalent probability	! Decimal or percentage rounded or truncated Accept 0.17 or 0.167 or $0.166(\ldots)$, or the equivalent \% values. Do not accept 0.16


14	9	4			Correct response	Additional guidance
a	a	a		1 m	600	
b	b	b		1 m	50	
b	b	b		1 m	Indicates 'No' and gives a correct explanation   The most common correct explanations:   State that $25 \%$ implies a total of 4 parts but there are 5   eg   - There are 5 parts not 4   - There are 4 parts of water not 3   State what $25 \%$ would imply eg   - $25 \%$ would be 1 part screenwash to 3 parts water   - It would give a total of $125 \%$   Refer to the correct percentage of $20 \%$ eg   - It's $20 \%$   - 1 out of $5=20$ out of 100	$\checkmark$ Minimally acceptable explanation eg, for the first category   - 1:4 means 5 parts altogether   - It's 1 out of 5   - There are 5 parts   $\checkmark$ Use of information from part (a)   eg   - $150 \mathrm{ml} \times 5=750$ not 600   $\times$ Incomplete explanation   eg   - It's less than a quarter screenwash   - It's more than $75 \%$ water   - There are more than 4 parts   - 1 part with 4 parts


Tier \& Question				Marking overlay available		Net
3-5	4-6	5-7	6-8			
15	10	5			Correct response	Additional guidance
a	a	a		1 m	Indicates the correct shape, ie $\qquad$	
b	b	b		1m 1m 1m	Lines correct ie uses a ruler to draw both straight lines from a common point, within the tolerance for length as implied by the overlay   Angle correct ie draws or indicates the angle within the tolerance as shown on the overlay   Arc correct ie draws the arc within the tolerance as shown on the overlay. (Ignore continuation of the arc beyond the lines denoting the angle)	$\checkmark$ Lines correct length but outside of the arcs shown on the overlay   $\checkmark$ Follow through from an incorrect angle   ! Follow through from incorrect straight lines Accept, provided both lines are the same length and compasses have been used. Note the dashed lines on the overlay are a visual aid to help identify those who have not used compasses   $\mathbf{x}$ Arc shown as a series of points   ! Extra information added to the net in an attempt to show a 3-D drawing Penalise one mark only, by withholding the final mark that would otherwise have been awarded


Tier \& Question						Piles of cards
3-5	4-6 5	5-7	6-8			
16	11	6			Correct response	Additional guidance
a	a	a		1 m	Correct expression eg   - $4 n+5$   - $6 n+8-(2 n+3)$	$\begin{aligned} & \mathbf{x} \text { Incorrect expression } \\ & \text { eg, for part (a) } \\ & 6 n+8-2 n+3 \\ & \text { eg, for part (b) } \\ & 6 n+8 \div 2 \end{aligned}$
b	b	b		1 m	Correct expression eg   - $3 n+4$   - $\frac{6 n+8}{2}$   - $(6 n+8) \div 2$	$\checkmark$ Correct expression repeated eg   - $3 n+4$ and $3 n+4$
c	c	c		$2 \mathrm{~m}$   or $1 \mathrm{~m}$	105   Shows the value 20   or   Using an incorrect value of $n$, evaluates $5 n+5$ correctly   eg, from $n=26$   - $5 \times 26+5=135$   eg, from $n=23$   - 120   or   Using an incorrect value of $n$, evaluates $6 n+8$ correctly and then subtracts 23   eg, from $n=24$   - $6 \times 24+8=152,152-23=129$   eg, from $n=23$   - $6 \times 23+8=146,146-23=123$	! Value for $n$ if not stated Accept if embedded eg $5 \times 21+5=110$   Do not accept if not specified and not embedded eg   - 120 (neither $n=23$, nor $5 \times 23+5$ shown)



Tier \& Question						Same volume
3-5	4-6	5-7	6-8			
	13	8	1		Correct response	Additional guidance
	a	a	a	$\begin{aligned} & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \end{aligned}$	Correct volume, ie 60   Correct units eg   - $\mathrm{cm}^{3}$   - Centimetres cubed	$!$ The value of 60 is shown to the power of 3 eg   - $60^{3}$   - $60^{3} \mathrm{~cm}$   Assume the power refers to units, ie mark as 1, 0   $\checkmark$ Informal but unambiguous language eg   - Cube centimetres
	b	b	b	1 m	6	! Follow through as their part (a) $\div 10$ Accept provided the value is exact and not rounded   ! Incorrect units inserted Ignore



$\begin{array}{\|l\|l\|l\|} \hline \text { Tier \& Question } \\ \hline 3-5 & 4-6 & 5-7 \\ \hline \end{array}$			Angles again (cont)		
14	92	2		Correct response	Additional guidance
		$\begin{gathered} o \\ 2 r \end{gathered}$	$\begin{array}{c\|\|} \hline \begin{array}{c} o r \\ 2 \mathrm{~m} \end{array} \\ \hline \end{array}$	Indicates $a$ is 10 , even if the relevant angles are not identified clearly or correctly   or   Shows a complete correct method with the relevant angles clearly identified and with not more than one computational error, and follows through correctly to find their $\angle$ ACK   or   Identifies clearly any two of the six correct angles as shown previously, even if others are incorrect   Shows a complete correct method with not more than one computational error, and follows through correctly to find their $\angle \mathrm{ACK}$, but their angles are not clearly identified or   Identifies clearly any one of the six correct angles as shown previously, even if others are incorrect	$\checkmark$ Minimally acceptable indication of method eg



					Equating
$\begin{array}{\|l\|} \hline \text { Tier \& Question } \\ \hline 3-54-65-76-8 \\ \hline \end{array}$					
16		4		Correct response	Additional guidance
a	a	a	$\begin{aligned} & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \end{aligned}$	8 $-3$	$\checkmark$ Values substituted into the given equations Ignore   $\times$ Incomplete processing
b	b	b	1m	Writes a correct expression eg   - $3 a+6 b-(2 c-d)$   - $3 a+6 b-2 c+d$   - $3 a+6 b-3$   - $7(2 c-d)$   - $14 c-7 d$   - $2 c-d+18$   - $\frac{7}{8}(3 a+6 b)$	$\times$ Incorrect expression   eg   - $3 a+6 b-2 c-d$   - $7 \times 2 c-d$   - $2 c-d \times 7$   $\mathbf{x}$ Expression uses only one of $a$ or $b$, or only one of $c$ or $d$ Note these are not possible without substitution of specific values and such expressions must therefore be incorrect


Tier \& Q	Questio				Same areas
3-5 4	5-7	6-8			
17	12	5		Correct response	Additional guidance
a	a	a	1m	Correct explanation that states the area of the rectangle is 6 and justifies why the area of the triangle is also 6   The most common correct justifications for the triangle:   Show, or imply by correct substitution, the relevant formula   eg   - $\frac{1}{2} b \times h$   - $b \times h \div 2$   - $3 \times 4 \div 2$   - $1.5 \times 4$   Divide the triangle into two parts as shown, then justify why the area of the smaller triangle is 1.5   eg   Area of $\mathrm{A}=4.5$ Area of rest of shape would be 2 but half is not shaded, so it's $4.5+2-0.5$   Show the area of the triangle is half that of the enclosing square, less 2   eg   -   Show correct groupings eg   Area of triangle is 5 as shown and the bits shaded black makes 6   Use dissection   eg	! Units given   Ignore   ! Areas not evaluated Accept if unambiguous and equated eg   - $3 \times 2=3 \times 4 \div 2$   $\times$ Incomplete explanation   eg   - You add up the halves   - Count the squares, join halves then join little bits to make 6   $\times$ Spurious explanation   eg   - One of the sloping sides marked as 4 and used as the height of the triangle   - Triangle incorrectly grouped to show 6   Note to markers:   Correct responses based on grouping must include the following pairings:




Tier \& Question				Libraries (cont)		
3-5	4-6	5-7	6-8			
	18	13	6		Correct response	Additional guidance
	b	b	b	1 m	Indicates 'Cannot be certain' and gives a correct justification that you cannot predict beyond the data set eg   - No data is given for those years   - The diagram doesn't show 2004 so there is not enough information   - The trend might change   - Although the graph shows the number is decreasing, we cannot know for certain that it will continue	$\checkmark$ Minimally acceptable justification eg   - The diagram doesn't show 2004   - It only goes to 1998   - You can't predict the future   - Who can tell what will happen?   - Anything might happen   - They might decide they've closed enough   - There could be an increase or a decrease   - More libraries could open   - There is not enough information given   ! Justification describes the graph   Ignore if accompanying a correct response, otherwise do not accept   eg, accept   - The graph is not falling at a steady rate and anything might happen   eg, do not accept   - It is not falling at a steady rate   - The chart doesn't go in a steady pattern   - It is levelling out so there will probably be about 475   $\times$ Incomplete justification   eg   - Some libraries could close down   - It is uncertain


Tier \& Question			Marking overlay available		Equations
3-5 4-6	5-7	6-8			
19	14	7		Correct response	Additional guidance
	a	a	1 m	Draws a straight line within the tolerance, and at least of length, as specified by the overlay	! Points not plotted Ignore   $\times$ Points not joined
	b	b	2 m   or   1 m	Draws a curve within the tolerance as specified by the overlay between $(1,12)$ and $(12,1)$, even if the curve is incorrect or omitted elsewhere   The curve is within tolerance between $(2,6)$ and ( 6,2 ), even if incorrect or omitted elsewhere or Plots 6 points correctly	




Tier \& Question			Marking overlay available		Arrow
3-5 4-6	5-7	6-8			
21	17	10		Correct response	Additional guidance
	a	a	$2 \mathrm{~m}$   or $1 \mathrm{~m}$	Correct enlargement within the tolerance as shown on the overlay, with vertices joined   At least 5 vertices correct   or   The only error is to use an incorrect centre of enlargement, ie the enlargement is the correct size as shown by the overlay, with vertices joined, but is in the incorrect place	! Lines not ruled   Accept provided the pupil's intention is clear   ! Construction lines shown Ignore   $\checkmark$ For $1 m$, scale factor -2
	b	b	1 m   1m   1m	Arrow head length as 4   Angle as 40   Vertical height as 12	


Tier \& Question						Questions
3-5	5-7	-7	6-8			
		8	11		Correct response	Additional guidance
		a	a	$1 \mathrm{~m}$ $1 \mathrm{~m}$	0.15 or equivalent probability   0.65 or equivalent probability	
		b	b	1 m	14	$\checkmark 40$ used within the answer Accept eg   - 14 out of 40   - $\frac{14}{40}$





Tier \& Question			Percentage change		
3-5	4-6 5-7	6-8			
	21	14		Correct response	Additional guidance
	a	a	1 m   1m   1m	Indicates $70 \times 1.09$   Gives a correct numerical interpretation for one of the calculations, even if it is not in question form eg , for $70 \times 0.9$   - What is 70 decreased by $10 \%$ ?   - Find $90 \%$ of 70   - What is $70 \%$ of 90 ?   - What is $\frac{9}{10}$ of 70 ?   eg, for $70 \times 1.9$   - It increases 70 by $90 \%$   - $190 \%$ of 70   eg , for $70 \times 0.09$   - What is $9 \%$ of 70 ?   - 70 decreased by $91 \%$   Gives a correct interpretation for a different calculation	! Units or context given   Ignore   ! Two or more steps used   eg , for $70 \times 1.9$   - Finds $90 \%$ of 70 then adds it on to 70   Penalise only the first occurrence   ! Multiplication sign not interpreted   eg, for $70 \times 1.9$   - $70 \times 190 \%$   Penalise only the first occurrence   $\times$ Incorrect response   eg, for $70 \times 1.9$   - Increase 70 by $190 \%$   $\times 70 \times 1.09$ not chosen for the first mark, but interpreted later
	b	b	1 m	0.86	$\times$ Two-step process   $\times$ Incorrect \% sign eg - 0.86\%
		c	$2 \mathrm{~m}$   or $1 \mathrm{~m}$	Shows the value 121   or   Shows a correct method, working only with the percentage increases   eg   - $1.1^{2}$   - $110 \times 1.1$   - $110+11$   or   Shows a complete correct method with not more than one computational error eg   - $\begin{aligned} & 70+10 \%=77 \\ & 77+10 \%=84.7 \\ & \left(\frac{84.7-70}{70}\right) \times 100 \end{aligned}$   - 10 increased by $10 \%$ is 11   11 increased by $10 \%$ is 12.1   $2.1 \times 10$	






Index to mark schemes

Tier				Question	Page
3-5	4-6	5-7	6-8		
1				Game	10
2				Travelling to school	10
3				Holiday	11
4				Describing shapes	12
5				School trip	13
6	1			Place names	13
7	2			Dinner time	14
8	3			Which calculation?	15
9	4			Throwing coins	16
10	5			Folding	17
11	6	1		Yards	17
12	7	2		Scales	18
13	8	3		Security lock	19
14	9	4		Screenwash	19
15	10	5		Net	20
16	11	6		Piles of cards	21
17	12	7		Cycling	22
	13	8	1	Same volume	23
	14	9	2	Angles again	24
	15	10	3	Photos	26
	16	11	4	Equating	27
	17	12	5	Same areas	28
	18	13	6	Libraries	30
	19	14	7	Equations	32
	20	15	8	Walk	32
		16	9	Swimming clubs	33
	21	17	10	Arrow	34
		18	11	Questions	34
		19	12	Circling	35
		20	13	Blackbirds	36

